Correction du devoir surveillé $n^{\circ}9$

Exercice I:

1. Soit $t \in]-1,1[$. Si $t \leq 0$, alors f(t)-f(0)=(0,0). Sinon, $\frac{f(t)-f(0)}{t}=\left(t\sin\left(\frac{1}{t}\right),t\cos\left(\frac{1}{t}\right)\right)$ et puisque cos et sin sont bornées, $\left(t\sin\left(\frac{1}{t}\right),t\cos\left(\frac{1}{t}\right)\right) \xrightarrow[t\to 0]{} (0,0)$. Ainsi, f est dérivable en 0 et f'(0)=(0,0). Ensuite, f est dérivable sur $]-1,1[\setminus\{0\}]$ car, composante par composante, elle est \mathscr{C}^{∞} sur \mathbb{R}^* . La fonction f est constante sur]-1,0[donc f'=0 sur]-1,0[et

$$\forall t \in]0, 1[, f'(t) = \left(2t \sin\left(\frac{1}{t}\right) - \cos\left(\frac{1}{t}\right), 2t \cos\left(\frac{1}{t}\right) + \sin\left(\frac{1}{t}\right)\right)$$

- 2. Soit $t \in]0, 1[. ||f'(t)||^2 = (2t \sin(\frac{1}{t}) \cos(\frac{1}{t}))^2 + (2t \cos(\frac{1}{t}) + \sin(\frac{1}{t}))^2$ $d'où ||f'(t)||^2 = (4t^2 + 1) \left(\sin^2(\frac{1}{t}) + \cos^2(\frac{1}{t})\right) = 4t^2 + 1.$
- 3. Pour tout $t \in]-1,0[$, ||f'(t)|| = 0 et pour tout $t \in]-1,0[$, ||f'(t)|| > 1. Ainsi 0 et $\sqrt{2}$ appartiennent à $\{||f'(t)||, t \in]-1,1[\}$ mais pas 1 donc $\{||f'(t)||, t \in]-1,1[\}$ n'est pas un intervalle de \mathbb{R} .

Exercice II:

Méthode A:

- 1. La fonction f est de classe \mathscr{C}^1 sur \mathbb{R}^2 par théorèmes généraux. Calculer les dérivées partielles en un point générique (x,y) de \mathbb{R}^2 : $\frac{\partial f}{\partial x}(x,y) = -2(2-x-y) 2(1-x) 4(1-2x-y) = -10 + 12x + 6y$ et $\frac{\partial f}{\partial y}(x,y) = -2(2-x-y) 2(1-2x-y) = -6 + 6x + 4y$. On sait que si la fonction f admet un extremum local sur \mathbb{R}^2 alors celui-ci est un point critique. Or (x,y) est un point critique de f si et seulement si $\nabla f(x,y) = (0,0)$ si et seulement si -10 + 12x + 6y = 0 et -6 + 6x + 4y = 0 si et seulement si $(x,y) = \left(\frac{1}{3},1\right)$. Conclusion : si la fonction f admet un extremum local sur \mathbb{R}^2 alors celui-ci est atteint en $\left(\frac{1}{3},1\right)$.
- 2. Soit $(x,y) \in \mathbb{R}^2$. Posons $u = x \frac{1}{3}$ et v = y 1. Le calcul donne $f(u,v) = 6u^2 + 6uv + 2v^2 + \frac{4}{3}$.
- 3. Or $6u^2 + 6uv + 2v^2 = 6(u + \frac{v}{2})^2 + \frac{v^2}{2} \ge 0$. D'où $f(u, v) \ge \frac{4}{3}$. Or lorsque x et y décrivent \mathbb{R} alors u et v également. Ainsi $\text{Im}(f) = \{f(u, v), u, v \in \mathbb{R}\}$ d'où f est minorée par $\frac{4}{3}$.
- 4. Or $f(\frac{1}{3},1) = \frac{4}{3}$ d'où f admet un minimum global en $(\frac{1}{3},1)$ et $\min_{(x,y)\in\mathbb{R}^2} f(x,y) = f(\frac{1}{3},1) = \frac{4}{3}$.

Méthode B:

On note a = (2, 1, 1), u = (1, 1, 2), v = (1, 0, 1) et F = Vect(u, v).

- 1. $\operatorname{Im}(g) = \{g(x,y) \mid x,y \in \mathbb{R}\} = \{xu + yv \mid x,y \in \mathbb{R}\} = \operatorname{Vect}(u,v) = F.$ Par ailleurs, pour tout $x,y \in \mathbb{R}$, $||a g(x,y)||^2 = (2 x y)^2 + (1 x)^2 + (1 2x y)^2 = f(x,y)$.
- 2. Ainsi $\inf_{(x,y)\in\mathbb{R}^2} f(x,y) = \inf_{(x,y)\in\mathbb{R}^2} ||a-g(x,y)||^2 = d(a,F)^2$.
- 3. D'après le théorème de la distance d'un point à un s.e.v. de dim. finie, d(a, F) = ||a b||.
- 4. Déjà, u et v sont libres donc F est bien un plan vectoriel. Soit p la projection orthogonale sur F. Alors $a-b=a-p(a)\in F^\perp$ donc comme $u,v\in F, \langle a-b,u\rangle=\langle a-b,v\rangle=0$.
 Puisque $b\in F,b$ s'écrit $\lambda u+\mu v$ avec $\lambda,\mu\in\mathbb{R}$, on a $\langle a-\lambda u-\mu v,u\rangle=0$ et $\langle a-\lambda u-\mu v,v\rangle=0$ i.e. $5-6\lambda-3\mu=0$ et $5-3\lambda+2\mu=0$ i.e. $\lambda=\frac{1}{3}$ et $\mu=1$. On en déduit que $b=\frac{1}{3}u+v=\frac{1}{3}$ (4, 1, 5).
- 5. $d(a,F) = ||a-b|| = \frac{1}{3}||3a-3b|| = \frac{1}{3}||(2,2,-2)|| = \frac{\sqrt{12}}{3} = \sqrt{\frac{4}{3}}$. D'où $\min_{(x,y)\in\mathbb{R}^2} f(x,y) = \frac{4}{3}$.